Source code for sharpy.linear.src.lingebm

"""
Linear beam model class

S. Maraniello, Aug 2018
N. Goizueta
"""

import numpy as np
import scipy as sc
import scipy.signal as scsig
import sharpy.linear.src.libss as libss
import sharpy.utils.algebra as algebra
import sharpy.utils.settings as settings
import sharpy.utils.cout_utils as cout
import sharpy.structure.utils.modalutils as modalutils
import warnings
from sharpy.linear.utils.ss_interface import LinearVector, StateVariable, OutputVariable, InputVariable


[docs]class FlexDynamic(): r""" Define class for linear state-space realisation of GEBM flexible-body equations from SHARPy``timestep_info`` class and with the nonlinear structural information. The linearised beam takes the following arguments: Args: tsinfo (sharpy.utils.datastructures.StructImeStepInfo): Structural timestep containing the modal information structure (sharpy.solvers.beamloader.Beam): Beam class with the structural information custom_settings (dict): settings for the linearised beam State-space models can be defined in continuous or discrete time (dt required). Modal projection, either on the damped or undamped modal shapes, is also avaiable. The rad/s array wv can be optionally passed for freq. response analysis To produce the state-space equations: 1. Set the settings: a. ``modal_projection={True,False}``: determines whether to project the states onto modal coordinates. Projection over damped or undamped modal shapes can be obtained selecting: - ``proj_modes={'damped','undamped'}`` while - ``inout_coords={'modes','nodal'}`` determines whether the modal state-space inputs/outputs are modal coords or nodal degrees-of-freedom. If ``modes`` is selected, the ``Kin`` and ``Kout`` gain matrices are generated to transform nodal to modal dofs b. ``dlti={True,False}``: if true, generates discrete-time system. The continuous to discrete transformation method is determined by:: discr_method={ 'newmark', # Newmark-beta 'zoh', # Zero-order hold 'bilinear'} # Bilinear (Tustin) transformation DLTIs can be obtained directly using the Newmark-:math:`\beta` method ``discr_method='newmark'`` ``newmark_damp=xx`` with ``xx<<1.0`` for full-states descriptions (``modal_projection=False``) and modal projection over the undamped structural modes (``modal_projection=True`` and ``proj_modes``). The Zero-order holder and bilinear methods, instead, work in all descriptions, but require the continuous state-space equations. 2. Generate an instance of the beam 2. Run ``self.assemble()``. The method accepts an additional parameter, ``Nmodes``, which allows using a lower number of modes than specified in ``self.Nmodes`` Examples: >>> beam_settings = {'modal_projection': True, >>> 'inout_coords': 'modes', >>> 'discrete_time': False, >>> 'proj_modes': 'undamped', >>> 'use_euler': True} >>> >>> beam = lingebm.FlexDynamic(tsstruct0, structure=data.structure, custom_settings=beam_settings) >>> >>> beam.assemble() Notes: * Modal projection will automatically select between damped/undamped modes shapes, based on the data available from tsinfo. * If the full system matrices are available, use the modal_sol methods to override mode-shapes and eigenvectors """ def __init__(self, tsinfo, structure=None, custom_settings=dict()): # Extract settings self.settings = custom_settings ### extract timestep_info modal results # unavailable attrs will be None self.freq_natural = tsinfo.modal.get('freq_natural') self.freq_damp = tsinfo.modal.get('freq_damped') self.damping = tsinfo.modal.get('damping') self.eigs = tsinfo.modal.get('eigenvalues') self.U = tsinfo.modal.get('eigenvectors') self.V = tsinfo.modal.get('eigenvectors_left') self.Kin_damp = tsinfo.modal.get('Kin_damp') # for 'damped' modes only self.Ccut = tsinfo.modal.get('Ccut') # for 'undamp' modes only self.Mstr = tsinfo.modal.get('M') self.Cstr = tsinfo.modal.get('C') self.Kstr = tsinfo.modal.get('K') ### set other flags self.modal = self.settings['modal_projection'] self.inout_coords = self.settings['inout_coords'] self.dlti = self.settings['discrete_time'] if self.dlti: self.dt = self.settings['dt'] else: self.dt = None self.Nmodes = self.settings['num_modes'] self._num_modes = None self.num_modes = self.settings['num_modes'] self.num_dof = self.U.shape[0] if self.V is not None: self.num_dof = self.num_dof // 2 self.proj_modes = self.settings['proj_modes'] if self.V is None: self.proj_modes = 'undamped' self.discr_method = self.settings['discr_method'] self.newmark_damp = self.settings['newmark_damp'] self.use_euler = self.settings['use_euler'] self.use_principal_axes = self.settings.get('rigid_modes_ppal_axes', False) # this setting is inherited from the setting in Modal solver ### set state-space variables self.SScont = None self.SSdisc = None self.Kin = None self.Kout = None # Store structure at linearisation and linearisation conditions self.structure = structure self.tsstruct0 = tsinfo self.Minv = None self.scaled_reference_matrices = dict() # keep reference values prior to time scaling if self.use_euler: self.euler_propagation_equations(tsinfo) if self.Mstr.shape[0] == 6*(self.tsstruct0.num_node - 1): self.clamped = True self.num_dof_rig = 0 else: self.clamped = False if self.use_euler: self.num_dof_rig = 9 else: self.num_dof_rig = 10 if self.modal: self.update_modal() self.num_dof_flex = np.sum(structure.vdof >= 0)*6 self.num_dof_str = self.num_dof_flex + self.num_dof_rig q, dq = self.reshape_struct_input() self.tsstruct0.q = q self.tsstruct0.dq = dq # Linearised gravity matrices self.Crr_grav = None self.Csr_grav = None self.Krs_grav = None self.Kss_grav = None
[docs] def reshape_struct_input(self): """ Reshape structural input in a column vector """ structure = self.structure # self.data.aero.beam tsdata = self.tsstruct0 q = np.zeros(self.num_dof_str) dq = np.zeros(self.num_dof_str) jj = 0 # structural dofs index for node_glob in range(structure.num_node): ### detect bc at node (and no. of dofs) bc_here = structure.boundary_conditions[node_glob] if bc_here == 1: # clamp dofs_here = 0 continue elif bc_here == -1 or bc_here == 0: dofs_here = 6 jj_tra = [jj, jj + 1, jj + 2] jj_rot = [jj + 3, jj + 4, jj + 5] # retrieve element and local index ee, node_loc = structure.node_master_elem[node_glob, :] # allocate q[jj_tra] = tsdata.pos[node_glob, :] q[jj_rot] = tsdata.psi[ee, node_loc] # update jj += dofs_here # allocate FoR A quantities if self.use_euler: q[-9:-3] = tsdata.for_vel q[-3:] = algebra.quat2euler(tsdata.quat) wa = tsdata.for_vel[3:] dq[-9:-3] = tsdata.for_acc T = algebra.deuler_dt(q[-3:]) dq[-3:] = T.dot(wa) else: q[-10:-4] = tsdata.for_vel q[-4:] = tsdata.quat wa = tsdata.for_vel[3:] dq[-10:-4] = tsdata.for_acc dq[-4] = -0.5 * np.dot(wa, tsdata.quat[1:]) return q, dq
@property def num_modes(self): return self._num_modes @num_modes.setter def num_modes(self, value): self.update_truncated_modes(value) self._num_modes = value @property def num_flex_dof(self): return np.sum(self.structure.vdof >= 0) * 6 @property def num_rig_dof(self): return self.Mstr.shape[0] - self.num_flex_dof def sort_repeated_evecs(self, evecs, evals): num_rbm = np.sum(evals.__abs__() == 0.) num_dof = evecs.shape[0] evecs_sorted = evecs.copy() if num_rbm != 0: for i in range(num_rbm): index_mode = np.argmax(evecs[:, i].__abs__()) - num_dof + num_rbm evecs_sorted[:, index_mode] = evecs[:, i] return evecs_sorted
[docs] def euler_propagation_equations(self, tsstr): """ Introduce the linearised Euler propagation equations that relate the body fixed angular velocities to the Earth fixed Euler angles. This method will remove the quaternion propagation equations created by SHARPy; the resulting system will have 9 rigid degrees of freedom. Args: tsstr: Returns: """ # Verify the rigid body modes are used num_node = tsstr.num_node num_flex_dof = 6*(num_node-1) euler = algebra.quat2euler(tsstr.quat) tsstr.euler = euler if self.Mstr.shape[0] == num_flex_dof + 10: # Erase quaternion equations self.Cstr[-4:, :] = 0 self.Mstr = self.Mstr[:-1, :-1] self.Cstr = self.Cstr[:-1, :-1] self.Kstr = self.Kstr[:-1, :-1] for_rot = tsstr.for_vel[3:] Crr = np.zeros((9, 9)) # Euler angle propagation equations Crr[-3:, -6:-3] = -algebra.deuler_dt(tsstr.euler) Crr[-3:, -3:] = -algebra.der_Teuler_by_w(tsstr.euler, for_rot) self.Cstr[-9:, -9:] += Crr else: warnings.warn('Euler parametrisation not implemented - Either rigid body modes are not being used or this ' 'method has already been called.')
@property def num_dof(self): self.num_dof = self.Mstr.shape[0] # Previously beam.U.shape[0] return self._num_dof @num_dof.setter def num_dof(self, value): self._num_dof = value
[docs] def linearise_gravity_forces(self, tsstr=None): r""" Linearises gravity forces and includes the resulting terms in the C and K matrices. The method takes the linearisation condition (optional argument), linearises and updates: * Stiffness matrix * Damping matrix * Modal damping matrix The method works for both the quaternion and euler angle orientation parametrisation. Args: tsstr (sharpy.utils.datastructures.StructTimeStepInfo): Structural timestep at the linearisation point Notes: The gravity forces are linearised to express them in terms of the beam formulation input variables: * Nodal forces: :math:`\delta \mathbf{f}_A` * Nodal moments: :math:`\delta(T^T \mathbf{m}_B)` * Total forces (rigid body equations): :math:`\delta \mathbf{F}_A` * Total moments (rigid body equations): :math:`\delta \mathbf{M}_A` Gravity forces are naturally expressed in ``G`` (inertial) frame .. math:: \mathbf{f}_{G,0} = \mathbf{M\,g} where the :math:`\mathbf{M}` is the tangent mass matrix obtained at the linearisation reference. To obtain the gravity forces expressed in A frame we make use of the projection matrices .. math:: \mathbf{f}_A = C^{AG}(\boldsymbol{\chi}) \mathbf{f}_{G,0} that projects a vector in the inertial frame ``G`` onto the body attached frame ``A``. The projection of a vector can then be linearised as .. math:: \delta \mathbf{f}_A = C^{AG} \delta \mathbf{f}_{G,0} + \frac{\partial}{\partial \boldsymbol{\chi}}(C^{AG} \mathbf{f}_{G,0}) \delta\boldsymbol{\chi}. * Nodal forces: The linearisation of the gravity forces acting at each node is simply .. math:: \delta \mathbf{f}_A = + \frac{\partial}{\partial \boldsymbol{\chi}}(C^{AG} \mathbf{f}_{G,0}) \delta\boldsymbol{\chi} where it is assumed that :math:`\delta\mathbf{f}_G = 0`. * Nodal moments: The gravity moments can be expressed in the local node frame of reference ``B`` by .. math:: \mathbf{m}_B = \tilde{X}_{B,CG}C^{BA}(\Psi)C^{AG}(\boldsymbol{\chi})\mathbf{f}_{G,0} The linearisation is given by: .. math:: \delta \mathbf{m}_B = \tilde{X}_{B,CG} \left(\frac{\partial}{\partial\Psi}(C^{BA}\mathbf{f}_{A,0})\delta\Psi + C^{BA}\frac{\partial}{\partial\boldsymbol{\chi}}(C^{AG}\mathbf{f}_{G,0})\delta\boldsymbol{\chi}\right) However, recall that the input moments are defined in tangential space :math:`\delta(T^\top\mathbf{m}_B)` whose linearised expression is .. math:: \delta(T^T(\Psi) \mathbf{m}_B) = T_0^T \delta \mathbf{m}_B + \frac{\partial}{\partial \Psi}(T^T \mathbf{m}_{B,0})\delta\Psi where the :math:`\delta \mathbf{m}_B` term has been defined above. * Total forces: The total forces include the contribution from all flexible degrees of freedom as well as the gravity forces arising from the mass at the clamped node .. math:: \mathbf{F}_A = \sum_n \mathbf{f}_A + \mathbf{f}_{A,clamped} which becomes .. math:: \delta \mathbf{F}_A = \sum_n \delta \mathbf{f}_A + \frac{\partial}{\partial\boldsymbol{\chi}}\left(C^{AG}\mathbf{f}_{G,clamped}\right) \delta\boldsymbol{\chi}. * Total moments: The total moments, as opposed to the nodal moments, are expressed in A frame and again require the addition of the moments from the flexible structural nodes as well as the ones from the clamped node itself. .. math:: \mathbf{M}_A = \sum_n \tilde{X}_{A,n}^{CG} C^{AG} \mathbf{f}_{n,G} + \tilde{X}_{A,clamped}C^{AG}\mathbf{f}_{G, clamped} where :math:`X_{A,n}^{CG} = R_{A,n} + C^{AB}(\Psi)X_{B,n}^{CG}`. Its linearised form is .. math:: \delta X_{A,n}^{CG} = \delta R_{A,n} + \frac{\partial}{\partial \Psi}(C^{AB} X_{B,CG})\delta\Psi Therefore, the overall linearisation of the total moment is defined as .. math:: \delta \mathbf{M}_A = \tilde{X}_{A,total}^{CG} \frac{\partial}{\partial \boldsymbol{\chi}}(C^{AG}\mathbf{F}_{G, total}) \delta \boldsymbol{\chi} -\sum_n \tilde{C}^{AG}\mathbf{f}_{G,0} \delta X_{A,n}^{CG} where :math:`X_{A, total}` is the centre of gravity of the entire system expressed in ``A`` frame and :math:`\mathbf{F}_{G, total}` are the gravity forces of the overall system in ``G`` frame, including the contributions from the clamped node. The linearisation introduces damping and stiffening terms since the :math:`\delta\boldsymbol{\chi}` and :math:`\delta\boldsymbol{\Psi}` terms are found in the damping and stiffness matrices respectively. Therefore, the beam matrices need updating to account for these terms: * Terms from the linearisation of the nodal moments will be assembled in the rows corresponding to moment equations and columns corresponding to the cartesian rotation vector .. math:: K_{ss}^{m,\Psi} \leftarrow -T_0^T \tilde{X}_{B,CG} \frac{\partial}{\partial\Psi}(C^{BA}\mathbf{f}_{A,0}) -\frac{\partial}{\partial \Psi}(T^T \mathbf{m}_{B,0}) * Terms from the linearisation of the translation forces with respect to the orientation are assembled in the damping matrix, the rows corresponding to translational forces and columns to orientation degrees of freedom .. math:: C_{sr}^{f,\boldsymbol{\chi}} \leftarrow - \frac{\partial}{\partial \boldsymbol{\chi}}(C^{AG} \mathbf{f}_{G,0}) * Terms from the linearisation of the moments with respect to the orientation are assembled in the damping matrix, with the rows correspondant to the moments and the columns to the orientation degrees of freedom .. math:: C_{sr}^{m,\boldsymbol{\chi}} \leftarrow - T_0^T\tilde{X}_{B,CG}C^{BA}\frac{\partial}{\partial\boldsymbol{\chi}}(C^{AG}\mathbf{f}_{G,0}) * Terms from the linearisation of the total forces with respect to the orientation correspond to the rigid body equations in the damping matrix, the rows to the translational forces and columns to the orientation .. math:: C_{rr}^{F,\boldsymbol{\chi}} \leftarrow - \sum_n \frac{\partial}{\partial \boldsymbol{\chi}}(C^{AG} \mathbf{f}_{G,0}) * Terms from the linearisation of the total moments with respect to the orientation correspond to the rigid body equations in the damping matrix, the rows to the moments and the columns to the orientation .. math:: C_{rr}^{M,\boldsymbol{\chi}} \leftarrow - \sum_n\tilde{X}_{A,n}^{CG} \frac{\partial}{\partial \boldsymbol{\chi}}(C^{AG}\mathbf{f}_{G,0}) * Terms from the linearisation of the total moments with respect to the nodal position :math:`R_A` are included in the stiffness matrix, the rows corresponding to the moments in the rigid body equations and the columns to the nodal position .. math:: K_{rs}^{M,R} \leftarrow + \sum_n \tilde{\mathbf{f}_{A,0}} * Terms from the linearisation of the total moments with respect to the cartesian rotation vector are included in the stiffness matrix, the rows corresponding to the moments in the rigid body equations and the columns to the cartesian rotation vector .. math:: K_{rs}^{M, \Psi} \leftarrow + \sum_n \tilde{\mathbf{f}_{A,0}}\frac{\partial}{\partial \Psi}(C^{AB} X_{B,CG}) """ if tsstr is None: tsstr = self.tsstruct0 if self.settings['print_info']: try: cout.cout_wrap('\nLinearising gravity terms...') except ValueError: pass num_node = tsstr.num_node flex_dof = 6 * sum(self.structure.vdof >= 0) if self.use_euler: rig_dof = 9 # This is a rotation matrix that rotates a vector from G to A Cag = algebra.euler2rot(tsstr.euler) Cga = Cag.T # Projection matrices - this projects the vector in G t to A Pag = Cga Pga = Cag else: rig_dof = 10 # get projection matrix A->G # Cga = algebra.quat2rotation(tsstr.quat) # Pga = Cga.T # Pag = Pga.T Cag = algebra.quat2rotation(tsstr.quat) # Rotation matrix FoR G rotated by quat Pag = Cag.T Pga = Pag.T # Mass matrix partitions for CG calculations Mss = self.Mstr[:flex_dof, :flex_dof] Mrr = self.Mstr[-rig_dof:, -rig_dof:] # Initialise damping and stiffness gravity terms Crr_grav = np.zeros((rig_dof, rig_dof)) Csr_grav = np.zeros((flex_dof, rig_dof)) Crr_debug = np.zeros((rig_dof, rig_dof)) Krs_grav = np.zeros((rig_dof, flex_dof)) Kss_grav = np.zeros((flex_dof, flex_dof)) # Overall CG in A frame Xcg_A = -np.array([Mrr[2, 4], Mrr[0, 5], Mrr[1, 3]]) / Mrr[0, 0] Xcg_Askew = algebra.skew(Xcg_A) if self.settings['print_info']: cout.cout_wrap('\tM = %.2f kg' % Mrr[0, 0], 1) cout.cout_wrap('\tX_CG A -> %.2f %.2f %.2f' %(Xcg_A[0], Xcg_A[1], Xcg_A[2]), 1) FgravA = np.zeros(3) FgravG = np.zeros(3) for i_node in range(num_node): # Gravity forces at the linearisation condition (from NL SHARPy in A frame) fgravA = tsstr.gravity_forces[i_node, :3] fgravG = Pga.dot(fgravA) # fgravG = tsstr.gravity_forces[i_node, :3] mgravA = tsstr.gravity_forces[i_node, 3:] fgravA = Pag.dot(fgravG) mgravG = Pag.dot(mgravA) # Get nodal position - A frame Ra = tsstr.pos[i_node, :] # retrieve element and local index ee, node_loc = self.structure.node_master_elem[i_node, :] psi = tsstr.psi[ee, node_loc, :] Cab = algebra.crv2rotation(psi) Cba = Cab.T Cbg = Cba.dot(Pag) # Tangential operator for moments calculation Tan = algebra.crv2tan(psi) jj = 0 # nodal dof index bc_at_node = self.structure.boundary_conditions[i_node] # Boundary conditions at the node if bc_at_node == 1: # clamp (only rigid-body) dofs_at_node = 0 jj_tra, jj_rot = [], [] elif bc_at_node == -1 or bc_at_node == 0: # (rigid+flex body) dofs_at_node = 6 jj_tra = 6 * self.structure.vdof[i_node] + np.array([0, 1, 2], dtype=int) # Translations jj_rot = 6 * self.structure.vdof[i_node] + np.array([3, 4, 5], dtype=int) # Rotations else: raise NameError('Invalid boundary condition (%d) at node %d!' \ % (bc_at_node, i_node)) jj += dofs_at_node if bc_at_node != 1: # Nodal centre of gravity (in the case of additional lumped masses, else should be zero) Mss_indices = np.concatenate((jj_tra, jj_rot)) Mss_node = Mss[Mss_indices,:] Mss_node = Mss_node[:, Mss_indices] Xcg_B = Cba.dot(-np.array([Mss_node[2, 4], Mss_node[0, 5], Mss_node[1, 3]]) / Mss_node[0, 0]) Xcg_Bskew = algebra.skew(Xcg_B) # Nodal CG in A frame Xcg_A_n = Ra + Cab.dot(Xcg_B) Xcg_A_n_skew = algebra.skew(Xcg_A_n) # Nodal CG in G frame - debug Xcg_G_n = Pga.dot(Xcg_A_n) if self.settings['print_info']: cout.cout_wrap("Node %2d \t-> B %.3f %.3f %.3f" %(i_node, Xcg_B[0], Xcg_B[1], Xcg_B[2]), 2) cout.cout_wrap("\t\t\t-> A %.3f %.3f %.3f" %(Xcg_A_n[0], Xcg_A_n[1], Xcg_A_n[2]), 2) cout.cout_wrap("\t\t\t-> G %.3f %.3f %.3f" %(Xcg_G_n[0], Xcg_G_n[1], Xcg_G_n[2]), 2) cout.cout_wrap("\tNode mass:", 2) cout.cout_wrap("\t\tMatrix: %.4f" % Mss_node[0, 0], 2) # cout.cout_wrap("\t\tGrav: %.4f" % (np.linalg.norm(fgravG)/9.81), 2) if self.use_euler: if bc_at_node != 1: # Nodal moments due to gravity -> linearisation terms wrt to delta_psi Kss_grav[np.ix_(jj_rot, jj_rot)] -= Tan.dot(Xcg_Bskew.dot(algebra.der_Ccrv_by_v(psi, fgravA))) Kss_grav[np.ix_(jj_rot, jj_rot)] -= algebra.der_TanT_by_xv(psi, Xcg_Bskew.dot(Cbg.dot(fgravG))) # Nodal forces due to gravity -> linearisation terms wrt to delta_euler Csr_grav[jj_tra, -3:] -= algebra.der_Peuler_by_v(tsstr.euler, fgravG) # Nodal moments due to gravity -> linearisation terms wrt to delta_euler Csr_grav[jj_rot, -3:] -= Tan.dot(Xcg_Bskew.dot(Cba.dot(algebra.der_Peuler_by_v(tsstr.euler, fgravG)))) # Total moments -> linearisation terms wrt to delta_Ra # These terms are not affected by the Euler matrix. Sign is correct (+) Krs_grav[3:6, jj_tra] += algebra.skew(fgravA) # Total moments -> linearisation terms wrt to delta_Psi Krs_grav[3:6, jj_rot] += np.dot(algebra.skew(fgravA), algebra.der_Ccrv_by_v(psi, Xcg_B)) else: if bc_at_node != 1: # Nodal moments due to gravity -> linearisation terms wrt to delta_psi Kss_grav[np.ix_(jj_rot, jj_rot)] -= Tan.dot(Xcg_Bskew.dot(algebra.der_Ccrv_by_v(psi, fgravA))) Kss_grav[np.ix_(jj_rot, jj_rot)] -= algebra.der_TanT_by_xv(psi, Xcg_Bskew.dot(Cbg.dot(fgravG))) # Total moments -> linearisation terms wrt to delta_Ra # Check sign (in theory it should be +=) Krs_grav[3:6, jj_tra] += algebra.skew(fgravA) # Total moments -> linearisation terms wrt to delta_Psi Krs_grav[3:6, jj_rot] += np.dot(algebra.skew(fgravA), algebra.der_Ccrv_by_v(psi, Xcg_B)) # Nodal forces due to gravity -> linearisation terms wrt to delta_euler Csr_grav[jj_tra, -4:] -= algebra.der_CquatT_by_v(tsstr.quat, fgravG) # ok # Crr_grav[:3, -4:] -= algebra.der_CquatT_by_v(tsstr.quat, fgravG) # not ok - see below # Nodal moments due to gravity -> linearisation terms wrt to delta_euler Csr_grav[jj_rot, -4:] -= Tan.dot(Xcg_Bskew.dot(Cba.dot(algebra.der_CquatT_by_v(tsstr.quat, fgravG)))) # Debugging: FgravA += fgravA FgravG += fgravG if self.use_euler: # Total gravity forces acting at the A frame Crr_grav[:3, -3:] -= algebra.der_Peuler_by_v(tsstr.euler, FgravG) # Total moments due to gravity in A frame Crr_grav[3:6, -3:] -= algebra.skew(Xcg_A).dot(algebra.der_Peuler_by_v(tsstr.euler, FgravG)) else: # Total gravity forces acting at the A frame Crr_grav[:3, -4:] -= algebra.der_CquatT_by_v(tsstr.quat, FgravG) # Total moments due to gravity in A frame Crr_grav[3:6, -4:] -= algebra.skew(Xcg_A).dot(algebra.der_CquatT_by_v(tsstr.quat, FgravG)) # Update matrices self.Kstr[:flex_dof, :flex_dof] += Kss_grav if self.Kstr[:flex_dof, :flex_dof].shape != self.Kstr.shape: # If the beam is free, update rigid terms as well self.Cstr[-rig_dof:, -rig_dof:] += Crr_grav self.Cstr[:-rig_dof, -rig_dof:] += Csr_grav self.Kstr[flex_dof:, :flex_dof] += Krs_grav # Save gravity matrices for post-processing self.Crr_grav = Crr_grav self.Csr_grav = Csr_grav self.Krs_grav = Krs_grav self.Kss_grav = Kss_grav if self.modal: self.Ccut = self.U.T.dot(self.Cstr.dot(self.U)) if self.settings['print_info']: cout.cout_wrap('\tUpdated the beam C, modal C and K matrices with the terms from the gravity linearisation\n')
[docs] def linearise_applied_forces(self, tsstr=None): r""" Linearise externally applied follower forces given in the local ``B`` reference frame. Updates the stiffness matrix with terms arising from this linearisation. The linearised beam equations are expressed in the following frames of reference: * Nodal forces: :math:`\delta \mathbf{f}_A` * Nodal moments: :math:`\delta(T^T \mathbf{m}_B)` * Total forces (rigid body equations): :math:`\delta \mathbf{F}_A` * Total moments (rigid body equations): :math:`\delta \mathbf{M}_A` Thus, when linearising externally applied follower forces projected onto the appropriate frame .. math:: \boldsymbol{f}_A^{ext} = C^{AB}(\boldsymbol{\psi})\boldsymbol{f}^{ext}_B the following terms appear: .. math:: \delta\boldsymbol{f}_A^{ext} = \frac{\partial}{\partial\boldsymbol{\psi}} \left(C^{AB}(\boldsymbol{\psi})\boldsymbol{f}^{ext}_{0,B}\right)\delta\boldsymbol{\psi} + C^{AB}_0\delta\boldsymbol f_B^{ext} where the :math:`\delta\boldsymbol{\psi}` is a stiffenning term that needs to be included in the stiffness matrix. The terms will appear in the rows relating to the translational degrees of freedom and the columns that correspond to the cartesian rotation vector. .. math:: K_{ss}^{f,\Psi} \leftarrow -\frac{\partial}{\partial\boldsymbol{\psi}} \left(C^{AB}(\boldsymbol{\psi})\boldsymbol{f}^{ext}_{0,B}\right) Externally applied moments in the material frame :math:`\boldsymbol{m}_B^{ext}` result in the following linearised expression: .. math:: \delta(T^\top\boldsymbol{m}_B) = \frac{\partial}{\partial\boldsymbol{\psi}}\left( T^\top(\boldsymbol{\psi})\boldsymbol{m}^{ext}_{0,B}\right)\delta\boldsymbol{\psi} + T_0^\top \delta\boldsymbol{m}_B^{ext} Which results in the following stiffenning term: .. math:: K_{ss}^{m,\Psi} \leftarrow -\frac{\partial}{\partial\boldsymbol{\psi}}\left( T^\top(\boldsymbol{\psi})\boldsymbol{m}^{ext}_{0,B}\right) The total contribution of moments must be summed up for the rigid body equations, and include contributions due to externally applied forces as well as moments: .. math:: \boldsymbol{M}_A^{ext} = \sum_n \tilde{\boldsymbol{R}}_A C^{AB}(\boldsymbol{\psi}) \boldsymbol{f}_B^{ext} + \sum C^{AB}(\boldsymbol{\psi})\boldsymbol{m}_B^{ext} The linearisation of this term becomes .. math:: \delta\boldsymbol{M}_A^{ext} = \sum\left(-\widetilde{C^{AB}_0 \boldsymbol{f}_{0,B}^{ext}}\delta \boldsymbol{R}_A + \widetilde{\boldsymbol{R}}\frac{\partial}{\partial\boldsymbol{\psi}}\left(C^{AB}\boldsymbol{f}_B\right) \delta \boldsymbol{\psi} + \widetilde{\boldsymbol{R}}C^{AB}\delta\boldsymbol{f}^{ext}_B\right) + \sum\left(\frac{\partial}{\partial\boldsymbol{\psi}}\left(C^{AB}\boldsymbol{m}_{0,B}\right) \delta\boldsymbol{\psi} + C^AB\delta\boldsymbol{m}_B^{ext}\right) which gives the following stiffenning terms in the rigid-flex partition of the stiffness matrix: .. math:: K_{ss}^{M,R} \leftarrow +\sum\widetilde{C^{AB}_0 \boldsymbol{f}_{0,B}^{ext}} .. math:: K_{ss}^{M,\Psi} \leftarrow -\sum\widetilde{\boldsymbol{R}}\frac{\partial}{\partial\boldsymbol{\psi}} \left(C^{AB}\boldsymbol{f}_{0,B}\right) and .. math:: K_{ss}^{M,\Psi} \leftarrow -\sum\frac{\partial}{\partial\boldsymbol{\psi}} \left(C^{AB}\boldsymbol{m}_{0,B}\right). Args: tsstr (sharpy.utils.datastructures.StructTimeStepInfo): Linearisation time step. """ if tsstr is None: tsstr = self.tsstruct0 # TODO: Future feature: gains for externally applied forces (i.e. thrust inputs) num_node = tsstr.num_node flex_dof = 6 * sum(self.structure.vdof >= 0) if self.use_euler: rig_dof = 9 # This is a rotation matrix that rotates a vector from G to A Cag = algebra.euler2rot(tsstr.euler) Cga = Cag.T # Projection matrices - this projects the vector in G t to A Pag = Cga Pga = Cag else: rig_dof = 10 stiff_flex = np.zeros((flex_dof, flex_dof), dtype=float) # flex-flex partition of K stiff_rig = np.zeros((rig_dof, flex_dof), dtype=float) # rig-flex partition of K for i_node in range(num_node): fext_b = self.structure.steady_app_forces[i_node, :3] mext_b = self.structure.steady_app_forces[i_node, 3:] # retrieve element and local index ee, node_loc = self.structure.node_master_elem[i_node, :] psi = tsstr.psi[ee, node_loc, :] Cab = algebra.crv2rotation(psi) Cba = Cab.T # Tangential operator for moments calculation Tan = algebra.crv2tan(psi) # Get nodal position - in A frame Ra = tsstr.pos[i_node, :] jj = 0 # nodal dof index bc_at_node = self.structure.boundary_conditions[i_node] # Boundary conditions at the node if bc_at_node == 1: # clamp (only rigid-body) dofs_at_node = 0 jj_tra, jj_rot = [], [] elif bc_at_node == -1 or bc_at_node == 0: # (rigid+flex body) dofs_at_node = 6 jj_tra = 6 * self.structure.vdof[i_node] + np.array([0, 1, 2], dtype=int) # Translations jj_rot = 6 * self.structure.vdof[i_node] + np.array([3, 4, 5], dtype=int) # Rotations else: raise NameError('Invalid boundary condition ({}) at node {}'.format(bc_at_node, i_node)) jj += dofs_at_node if bc_at_node != 1: # Externally applied follower forces stiff_flex[np.ix_(jj_tra, jj_rot)] -= algebra.der_Ccrv_by_v(psi, fext_b) stiff_rig[:3, jj_rot] -= algebra.der_Ccrv_by_v(psi, fext_b) # Rigid body contribution # Externally applied moments in B frame stiff_flex[np.ix_(jj_rot, jj_rot)] -= algebra.der_TanT_by_xv(psi, mext_b) # Total moments # force contribution stiff_rig[3:6, jj_tra] += algebra.skew(Cab.dot(fext_b)) # delta Ra term stiff_rig[3:6, jj_rot] -= algebra.skew(Ra).dot(algebra.der_Ccrv_by_v(psi, fext_b)) # delta psi term # moment contribution stiff_rig[3:6, jj_rot] -= algebra.der_Ccrv_by_v(psi, mext_b) if bc_at_node == 1: # forces applied at the A-frame (clamped node) need special attention since the # node has an associated CRV to it's master element which may not be zero. # forces applied at this node only appear in the rigid-body equations try: closest_node = self.structure.connectivities[ee, node_loc + 2] except IndexError: # node is not in the first position try: closest_node = self.structure.connectivities[ee, node_loc + 1] except IndexError: # node is the midpoint closest_node = self.structure.connectivities[ee, node_loc - 1] # indices of the node whos CRV applies to the clamped node jj_rot = 6 * self.structure.vdof[closest_node] + np.array([3, 4, 5], dtype=int) stiff_rig[:3, jj_rot] -= algebra.der_Ccrv_by_v(psi, fext_b) # Rigid body contribution # Total moments # force contribution stiff_rig[3:6, jj_rot] += algebra.skew(Cab.dot(fext_b)) # delta Ra term stiff_rig[3:6, jj_rot] -= algebra.skew(Ra).dot(algebra.der_Ccrv_by_v(psi, fext_b)) # delta psi term # moment contribution stiff_rig[3:6, jj_rot] -= algebra.der_Ccrv_by_v(psi, mext_b) self.Kstr[:flex_dof, :flex_dof] += stiff_flex if self.Kstr[:flex_dof, :flex_dof].shape != self.Kstr.shape: # free flying structure self.Kstr[-rig_dof:, :flex_dof] += stiff_rig
[docs] def assemble(self, Nmodes=None): r""" Assemble state-space model Several assembly options are available: 1. Discrete-time, Newmark-:math:`\beta`: * Modal projection onto undamped modes. It uses the modal projection such that the generalised coordinates :math:`\eta` are transformed into modal space by .. math:: \mathbf{\eta} = \mathbf{\Phi\,q} where :math:`\mathbf{\Phi}` are the first ``Nmodes`` right eigenvectors. Therefore, the equation of motion can be re-written such that the modes normalise the mass matrix to become the identity matrix. .. math:: \mathbf{I_{Nmodes}}\mathbf{\ddot{q}} + \mathbf{\Lambda_{Nmodes}\,q} = 0 The system is then assembled in Newmark-:math:`\beta` form as detailed in :func:`newmark_ss` * Full size system assembly. No modifications are made to the mass, damping or stiffness matrices and the system is directly assembled by :func:`newmark_ss`. 2. Continuous time state-space Args: Nmodes (int): number of modes to retain """ ### checks assert self.inout_coords in ['modes', 'nodes'], \ 'inout_coords=%s not implemented!' % self.inout_coords dlti = self.dlti modal = self.modal num_dof = self.num_dof if Nmodes is None or Nmodes >= self.num_modes: Nmodes = self.num_modes if dlti: # ---------------------------------- assemble discrete time if self.discr_method in ['zoh', 'bilinear']: # assemble continuous-time self.dlti = False self.assemble(Nmodes) # convert into discrete self.dlti = True self.cont2disc() elif self.discr_method == 'newmark': if modal: # Modal projection if self.proj_modes == 'undamped': Phi = self.U[:, :Nmodes] if self.Ccut is None: # Ccut = np.zeros((Nmodes, Nmodes)) Ccut = np.dot(Phi.T, np.dot(self.Cstr, Phi)) else: Ccut = np.dot(Phi.T, np.dot(self.Cstr, Phi)) Ass, Bss, Css, Dss = newmark_ss( np.linalg.inv(np.dot(self.U[:, :Nmodes].T, np.dot(self.Mstr, self.U[:, :Nmodes]))), Ccut, np.dot(self.U[:, :Nmodes].T, np.dot(self.Kstr, self.U[:, :Nmodes])), self.dt, self.newmark_damp) self.Kin = libss.Gain(Phi.T) self.Kin.input_variables = LinearVector([InputVariable('forces_n', size=self.Mstr.shape[0], index=0)]) self.Kin.output_variables = LinearVector([OutputVariable('Q', size=Nmodes, index=0)]) self.Kout = libss.Gain(sc.linalg.block_diag(*[Phi, Phi])) self.Kout.input_variables = LinearVector([InputVariable('q', size=Nmodes, index=0), InputVariable('q_dot', size=Nmodes, index=1)]) output_variables = LinearVector([OutputVariable('eta', size=self.num_dof_flex, index=0), OutputVariable('eta_dot', size=self.num_dof_flex, index=1)]) if not self.clamped: output_variables.add('beta_bar', size=self.num_dof_rig, index=0.5) output_variables.append('beta', size=self.num_dof_rig) self.Kout.output_variables = output_variables else: raise NameError( 'Newmark-beta discretisation not available ' \ 'for projection on damped eigenvectors') # build state-space model self.SSdisc = libss.StateSpace(Ass, Bss, Css, Dss, dt=self.dt) input_variables = LinearVector([InputVariable('Q', size=Nmodes, index=0)]) output_variables = LinearVector([OutputVariable('q', size=Nmodes, index=0), OutputVariable('q_dot', size=Nmodes, index=1)]) state_variables = output_variables.transform(output_variables, to_type=StateVariable) self.SSdisc.input_variables = input_variables self.SSdisc.output_variables = output_variables self.SSdisc.state_variables = state_variables if self.inout_coords == 'nodes': self.SSdisc = libss.addGain(self.SSdisc, self.Kin, 'in') self.SSdisc = libss.addGain(self.SSdisc, self.Kout, 'out') self.Kin, self.Kout = None, None else: # Full system self.Minv = np.linalg.inv(self.Mstr) Ass, Bss, Css, Dss = newmark_ss( self.Minv, self.Cstr, self.Kstr, self.dt, self.newmark_damp) self.Kin = None self.Kout = None self.SSdisc = libss.StateSpace(Ass, Bss, Css, Dss, dt=self.dt) input_variables = LinearVector([InputVariable('forces_n', size=self.Mstr.shape[0], index=0)]) output_variables = LinearVector([OutputVariable('eta', size=self.num_dof_flex, index=0), OutputVariable('eta_dot', size=self.num_dof_flex, index=1)]) if not self.clamped: output_variables.add('beta_bar', size=self.num_dof_rig, index=0.5) output_variables.append('beta', size=self.num_dof_rig) self.SSdisc.output_variables = output_variables self.SSdisc.input_variables = input_variables self.SSdisc.state_variables = LinearVector.transform(output_variables, to_type=StateVariable) else: raise NameError( 'Discretisation method %s not available' % self.discr_method) else: # -------------------------------- assemble continuous time if modal: # Modal projection Ass = np.zeros((2 * Nmodes, 2 * Nmodes)) Css = np.eye(2 * Nmodes) iivec = np.arange(Nmodes, dtype=int) if self.proj_modes == 'undamped': Phi = self.U[:, :Nmodes] Ass[iivec, Nmodes + iivec] = 1. # Ass[Nmodes:, :Nmodes] = -np.diag(self.freq_natural[:Nmodes] ** 2) Ass[Nmodes:, :Nmodes] = -self.U.T.dot(self.Kstr.dot(self.U)) if self.Ccut is not None: Ass[Nmodes:, Nmodes:] = -self.Ccut[:Nmodes, :Nmodes] Bss = np.zeros((2 * Nmodes, Nmodes)) Dss = np.zeros((2 * Nmodes, Nmodes)) Bss[Nmodes + iivec, iivec] = 1. self.Kin = libss.Gain(Phi.T) self.Kin.input_variables = LinearVector([InputVariable('forces_n', size=self.Mstr.shape[0], index=0)]) self.Kin.output_variables = LinearVector([OutputVariable('Q', size=Nmodes, index=0)]) self.Kout = libss.Gain(sc.linalg.block_diag(*[Phi, Phi])) self.Kout.input_variables = LinearVector([InputVariable('q', size=Nmodes, index=0), InputVariable('q_dot', size=Nmodes, index=1)]) output_variables = LinearVector([OutputVariable('eta', size=self.num_dof_flex, index=0), OutputVariable('eta_dot', size=self.num_dof_flex, index=1)]) if not self.clamped: output_variables.add('beta_bar', size=self.num_dof_rig, index=0.5) output_variables.append('beta', size=self.num_dof_rig) self.Kout.output_variables = output_variables else: # damped mode shapes # The algorithm assumes that for each couple of complex conj # eigenvalues, only one eigenvalue (and the eigenvectors # associated to it) is include in self.eigs. eigs = self.eigs[:Nmodes] U = self.U[:, :Nmodes] V = self.V[:, :Nmodes] Ass[iivec, iivec] = eigs.real Ass[iivec, Nmodes + iivec] = -eigs.imag Ass[Nmodes + iivec, iivec] = eigs.imag Ass[Nmodes + iivec, Nmodes + iivec] = eigs.real Bss = np.eye(2 * Nmodes) Dss = np.zeros((2 * Nmodes, 2 * Nmodes)) self.Kin = np.block( [[self.Kin_damp[iivec, :].real], [self.Kin_damp[iivec, :].imag]]) self.Kout = np.block([2. * U.real, (-2.) * U.imag]) # build state-space model self.SScont = libss.StateSpace(Ass, Bss, Css, Dss) input_variables = LinearVector([InputVariable('Q', size=Nmodes, index=0)]) output_variables = LinearVector([OutputVariable('q', size=Nmodes, index=0), OutputVariable('q_dot', size=Nmodes, index=1)]) state_variables = output_variables.transform(output_variables, to_type=StateVariable) self.SScont.input_variables = input_variables self.SScont.output_variables = output_variables self.SScont.state_variables = state_variables if self.inout_coords == 'nodes': self.SScont = libss.addGain(self.SScont, self.Kin, 'in') self.SScont = libss.addGain(self.SScont, self.Kout, 'out') self.Kin, self.Kout = None, None else: # Full system if self.Mstr is None: raise NameError('Full-states matrices not available') Mstr, Cstr, Kstr = self.Mstr, self.Cstr, self.Kstr Ass = np.zeros((2 * num_dof, 2 * num_dof)) Bss = np.zeros((2 * num_dof, num_dof)) Css = np.eye(2 * num_dof) Dss = np.zeros((2 * num_dof, num_dof)) Minv_neg = -np.linalg.inv(self.Mstr) Ass[range(num_dof), range(num_dof, 2 * num_dof)] = 1. Ass[num_dof:, :num_dof] = np.dot(Minv_neg, Kstr) Ass[num_dof:, num_dof:] = np.dot(Minv_neg, Cstr) Bss[num_dof:, :] = -Minv_neg self.Kin = None self.Kout = None self.SScont = libss.StateSpace(Ass, Bss, Css, Dss) input_variables = LinearVector([InputVariable('forces_n', size=self.Mstr.shape[0], index=0)]) output_variables = LinearVector([OutputVariable('eta', size=self.num_dof_flex, index=0), OutputVariable('eta_dot', size=self.num_dof_flex, index=1)]) if not self.clamped: output_variables.add('beta_bar', size=self.num_dof_rig, index=0.5) output_variables.append('beta', size=self.num_dof_rig) self.SScont.output_variables = output_variables self.SScont.input_variables = input_variables self.SScont.state_variables = LinearVector.transform(output_variables, to_type=StateVariable)
[docs] def freqresp(self, wv=None, bode=True): """ Computes the frequency response of the current state-space model. If ``self.modal=True``, the in/out are determined according to ``self.inout_coords`` """ assert wv is not None, 'Frequency range not provided.' if self.dlti: self.Ydisc = libss.freqresp(self.SSdisc, wv, dlti=self.dlti) if bode: self.Ydisc_abs = np.abs(self.Ydisc) self.Ydisc_ph = np.angle(self.Ydisc, deg=True) else: self.Ycont = libss.freqresp(self.SScont, wv, dlti=self.dlti) if bode: self.Ycont_abs = np.abs(self.Ycont) self.Ycont_ph = np.angle(self.Ycont, deg=True)
[docs] def converge_modal(self, wv=None, tol=None, Yref=None, Print=False): """ Determine number of modes required to achieve a certain convergence of the modal solution in a prescribed frequency range ``wv``. The H-infinity norm of the error w.r.t. ``Yref`` is used for assessing convergence. .. Warning:: if a reference freq. response, Yref, is not provided, the full- state continuous-time frequency response is used as reference. This requires the full-states matrices ``Mstr``, ``Cstr``, ``Kstr`` to be available. """ if wv is None: wv = self.wv assert wv is not None, 'Frequency range not provided.' assert tol is not None, 'Tolerance, tol, not provided' assert self.modal is True, 'Convergence analysis requires modal=True' if Yref is None: # use cont. time. full-states as reference dlti_here = self.dlti self.modal = False self.dlti = False self.assemble() self.freqresp(wv) Yref = self.Ycont.copy() self.dlti = dlti_here self.modal = True if Print: print('No. modes\tError\tTolerance') for nn in range(1, self.Nmodes + 1): self.assemble(Nmodes=nn) self.freqresp(wv, bode=False) Yhere = self.Ycont if self.dlti: Yhere = self.Ydisc er = np.max(np.abs(Yhere - Yref)) if Print: print('%.3d\t%.2e\t%.2e' % (nn, er, tol)) if er < tol: if Print: print('Converged!') self.Nmodes = nn break
[docs] def tune_newmark_damp(self, amplification_factor=0.999): """ Tune artifical damping to achieve a percent reduction of the lower frequency (lower damped) mode """ assert self.discr_method == 'newmark' and self.dlti, \ "select self.discr_method='newmark' and self.dlti=True" newmark_damp = self.newmark_damp import scipy.optimize as scopt def get_res(newmark_damp_log10): self.newmark_damp = 10. ** (newmark_damp_log10) self.assemble() eigsabs = np.abs(np.linalg.eigvals(self.SSdisc.A)) return np.max(eigsabs) - amplification_factor exp_opt = scopt.fsolve(get_res, x0=-3)[0] self.newmark_damp = 10. ** exp_opt print('artificial viscosity: %.4e' % self.newmark_damp)
[docs] def update_modal(self): r""" Re-projects the full-states continuous-time structural dynamics equations .. math:: \mathbf{M}\,\mathbf{\ddot{x}} +\mathbf{C}\,\mathbf{\dot{x}} + \mathbf{K\,x} = \mathbf{F} onto modal space. The modes used to project are controlled through the ``self.proj_modes={damped or undamped}`` attribute. .. Warning:: This method overrides SHARPy ``timestep_info`` results and requires ``Mstr``, ``Cstr``, ``Kstr`` to be available. """ if self.proj_modes == 'undamped': if self.Cstr is not None: if self.settings['print_info']: cout.cout_wrap('Warning, projecting system with damping onto undamped modes') # Eigenvalues are purely complex - only the complex part is calculated eigenvalues, eigenvectors = np.linalg.eig(np.linalg.solve(self.Mstr, self.Kstr)) omega = np.sqrt(eigenvalues) order = np.argsort(omega)[:self.Nmodes] self.freq_natural = omega[order] phi = eigenvectors[:, order] phi = modalutils.mode_sign_convention(self.structure.boundary_conditions, phi, not self.clamped, self.use_euler) if not self.clamped and self.use_principal_axes: phi = modalutils.free_modes_principal_axes(phi, self.Mstr, use_euler=self.use_euler) # Scale modes to have an identity mass matrix phi = modalutils.scale_mass_normalised_modes(phi, self.Mstr) self.U = phi # Update self.eigs = eigenvalues[order] if not self.use_principal_axes: # in the case of use_principal_axes modes are already ordered self.U = self.sort_repeated_evecs(self.U, self.eigs) # To do: update SHARPy's timestep info modal results else: raise NotImplementedError('Projection update for damped systems not yet implemented ')
[docs] def update_truncated_modes(self, nmodes): r""" Updates the system to the specified number of modes Args: nmodes: Returns: """ # Verify that the new number of modes is less than the current value assert nmodes <= self.Nmodes, 'Unable to truncate to %g modes since only %g are available' %(nmodes, self.Nmodes) self.Nmodes = nmodes self.eigs = self.eigs[:nmodes] self.U = self.U[:,:nmodes] self.freq_natural = self.freq_natural[:nmodes] try: self.freq_damp[:nmodes] except TypeError: pass # Update Ccut matrix if self.modal: self.Ccut = np.dot(self.U.T, np.dot(self.Cstr, self.U))
[docs] def scale_system_normalised_time(self, time_ref): r""" Scale the system with a normalised time step. The resulting time step is :math:`\Delta t = \Delta \bar{t}/t_{ref}`, where the over bar denotes dimensional time. The structural equations of motion are rescaled as: .. math:: \mathbf{M}\ddot{\boldsymbol{\eta}} + \mathbf{C} t_{ref} \dot{\boldsymbol{\eta}} + \mathbf{K} t_{ref}^2 \boldsymbol{\eta} = t_{ref}^2 \mathbf{N} For aeroelastic applications, the reference time is usually defined using the semi-chord, :math:`b`, and the free stream velocity, :math:`U_\infty`. .. math:: t_{ref,ae} = \frac{b}{U_\infty} Args: time_ref (float): Normalisation factor such that :math:`t/\bar{t}` is non-dimensional. """ if self.scaled_reference_matrices: raise UserWarning('System already time scaled. System may just need an update.' ' See update_matrices_time_scale') # if time_ref != 1.0 and time_ref is not None: if self.num_rig_dof != 0: warnings.warn('Time normalisation not yet implemented with rigid body motion.') if self.dlti: self.scaled_reference_matrices['dt'] = self.dt self.dt /= time_ref if self.settings['print_info']: cout.cout_wrap('Scaling beam according to reduced time...', 0) if self.dlti: cout.cout_wrap('\tSetting the beam time step to (%.4f)' % self.dt, 1) self.scaled_reference_matrices['C'] = self.Cstr.copy() self.scaled_reference_matrices['K'] = self.Kstr.copy() self.update_matrices_time_scale(time_ref)
def update_matrices_time_scale(self, time_ref): try: cout.cout_wrap('Updating C and K matrices and natural frequencies with new normalised time...', 1) except ValueError: pass try: self.Kstr = self.scaled_reference_matrices['K'] * time_ref ** 2 self.Cstr = self.scaled_reference_matrices['C'] * time_ref self.freq_natural *= time_ref except KeyError: raise KeyError('The scaled reference matrices have not been set, most likely because you are trying to ' 'rescale a dimensional system. Make sure your system is normalised.')
[docs] def cont2disc(self, dt=None): """Convert continuous-time SS model into """ assert self.discr_method != 'newmark', \ 'For Newmark-beta discretisation, use assemble method directly.' if dt is not None: self.dt = dt else: assert self.dt is not None, \ 'Provide time-step for conversion to discrete-time' SScont = self.SScont tpl = scsig.cont2discrete( (SScont.A, SScont.B, SScont.C, SScont.D), dt=self.dt, method=self.discr_method) self.SSdisc = libss.StateSpace(*tpl[:-1], dt=tpl[-1]) self.dlti = True
def newmark_ss(Minv, C, K, dt, num_damp=1e-4): r""" Produces a discrete-time state-space model of the structural equations .. math:: \mathbf{\ddot{x}} &= \mathbf{M}^{-1}( -\mathbf{C}\,\mathbf{\dot{x}}-\mathbf{K}\,\mathbf{x}+\mathbf{F} ) \\ \mathbf{y} &= \mathbf{x} based on the Newmark-:math:`\beta` integration scheme. The output state-space model has form: .. math:: \mathbf{X}_{n+1} &= \mathbf{A}\,\mathbf{X}_n + \mathbf{B}\,\mathbf{F}_n \\ \mathbf{Y} &= \mathbf{C}\,\mathbf{X} + \mathbf{D}\,\mathbf{F} with :math:`\mathbf{X} = [\mathbf{x}, \mathbf{\dot{x}}]^T` Note that as the state-space representation only requires the input force :math:`\mathbf{F}` to be evaluated at time-step :math:`n`,the :math:`\mathbf{C}` and :math:`\mathbf{D}` matrices are, in general, fully populated. The Newmark-:math:`\beta` integration scheme is carried out following the modifications presented by Geradin [1] that render it unconditionally stable. The displacement and velocities are estimated as: .. math:: x_{n+1} &= x_n + \Delta t \dot{x}_n + \left(\frac{1}{2}-\theta_2\right)\Delta t^2 \ddot{x}_n + \theta_2\Delta t \ddot{x}_{n+1} \\ \dot{x}_{n+1} &= \dot{x}_n + (1-\theta_1)\Delta t \ddot{x}_n + \theta_1\Delta t \ddot{x}_{n+1} The stencil is unconditionally stable if the tuning parameters :math:`\theta_1` and :math:`\theta_2` are chosen as: .. math:: \theta_1 &= \frac{1}{2} + \alpha \\ \theta_2 &= \frac{1}{4} \left(\theta_1 + \frac{1}{2}\right)^2 \\ \theta_2 &= \frac{5}{80} + \frac{1}{4} (\theta_1 + \theta_1^2) \text{TBC SOURCE} where :math:`\alpha>0` accounts for small positive algorithmic damping. The following steps describe how to apply the Newmark-beta scheme to a state-space formulation. The original idea is based on [1]. The equation of a second order system dynamics reads: .. math:: M\mathbf{\ddot q} + C\mathbf{\dot q} + K\mathbf{q} = F Applying that equation to the time steps :math:`n` and :math:`n+1`, rearranging terms and multiplying by :math:`M^{-1}`: .. math:: \mathbf{\ddot q}_{n} = - M^{-1}C\mathbf{\dot q}_{n} - M^{-1}K\mathbf{q}_{n} + M^{-1}F_{n} \\ \mathbf{\ddot q}_{n+1} = - M^{-1}C\mathbf{\dot q}_{n+1} - M^{-1}K\mathbf{q}_{n+1} + M^{-1}F_{n+1} The relations of the Newmark-beta scheme are: .. math:: \mathbf{q}_{n+1} &= \mathbf{q}_n + \mathbf{\dot q}_n\Delta t + (\frac{1}{2}-\beta)\mathbf{\ddot q}_n \Delta t^2 + \beta \mathbf{\ddot q}_{n+1} \Delta t^2 + O(\Delta t^3) \\ \mathbf{\dot q}_{n+1} &= \mathbf{\dot q}_n + (1-\gamma)\mathbf{\ddot q}_n \Delta t + \gamma \mathbf{\ddot q}_{n+1} \Delta t + O(\Delta t^3) Substituting the former relation onto the later ones, rearranging terms, and writing it in state-space form: .. math:: \begin{bmatrix} I + M^{-1}K \Delta t^2\beta \quad \Delta t^2\beta M^{-1}C \\ (\gamma \Delta t M^{-1}K) \quad (I + \gamma \Delta t M^{-1}C) \end{bmatrix} \begin{Bmatrix} \mathbf{\dot q}_{n+1} \\ \mathbf{\ddot q}_{n+1} \end{Bmatrix} = \begin{bmatrix} (I - \Delta t^2(1/2-\beta)M^{-1}K \quad (\Delta t - \Delta t^2(1/2-\beta)M^{-1}C \\ (-(1-\gamma)\Delta t M^{-1}K \quad (I - (1-\gamma)\Delta tM^{-1}C \end{bmatrix} \begin{Bmatrix} \mathbf{q}_{n} \\ \mathbf{\dot q}_{n} \end{Bmatrix} + \begin{Bmatrix} (\Delta t^2(1/2-\beta) \\ (1-\gamma)\Delta t \end{Bmatrix} M^{-1}F_n+ \begin{Bmatrix} (\Delta t^2\beta) \\ (\gamma \Delta t) \end{Bmatrix}M^{-1}F_{n+1} To understand SHARPy code, it is convenient to apply the following change of notation: .. math:: \textrm{th1} = \gamma \\ \textrm{th2} = \beta \\ \textrm{a0} = \Delta t^2 (1/2 -\beta) \\ \textrm{b0} = \Delta t (1 -\gamma) \\ \textrm{a1} = \Delta t^2 \beta \\ \textrm{b1} = \Delta t \gamma \\ Finally: .. math:: A_{ss1} \begin{Bmatrix} \mathbf{\dot q}_{n+1} \\ \mathbf{\ddot q}_{n+1} \end{Bmatrix} = A_{ss0} \begin{Bmatrix} \mathbf{\dot q}_{n} \\ \mathbf{\ddot q}_{n} \end{Bmatrix} + \begin{Bmatrix} (\Delta t^2(1/2-\beta) \\ (1-\gamma)\Delta t \end{Bmatrix} M^{-1}F_n+ \begin{Bmatrix} (\Delta t^2\beta) \\ (\gamma \Delta t) \end{Bmatrix}M^{-1}F_{n+1} To finally isolate the vector at :math:`n+1`, instead of inverting the :math:`A_{ss1}` matrix, several systems are solved. Moreover, the output equation is simply :math:`y=x`. Args: Minv (np.array): Inverse mass matrix :math:`\mathbf{M^{-1}}` C (np.array): Damping matrix :math:`\mathbf{C}` K (np.array): Stiffness matrix :math:`\mathbf{K}` dt (float): Timestep increment num_damp (float): Numerical damping. Default ``1e-4`` Returns: tuple: the A, B, C, D matrices of the state space packed in a tuple with the predictor and delay term removed. References: [1] - Geradin M., Rixen D. - Mechanical Vibrations: Theory and application to structural dynamics """ # weights th1 = 0.5 + num_damp # th2=0.25*(th1+.5)**2 th2 = 0.0625 + 0.25 * (th1 + th1 ** 2) dt2 = dt ** 2 a1 = th2 * dt2 a0 = 0.5 * dt2 - a1 b1 = th1 * dt b0 = dt - b1 # relevant matrices N = K.shape[0] Imat = np.eye(N) MinvK = np.dot(Minv, K) MinvC = np.dot(Minv, C) # build StateSpace Ass0 = np.block([[Imat - a0 * MinvK, dt * Imat - a0 * MinvC], [-b0 * MinvK, Imat - b0 * MinvC]]) Ass1 = np.block([[Imat + a1 * MinvK, a1 * MinvC], [b1 * MinvK, Imat + b1 * MinvC]]) Ass = np.linalg.solve(Ass1, Ass0) Bss0 = np.linalg.solve(Ass1, np.block([[a0 * Minv], [b0 * Minv]])) Bss1 = np.linalg.solve(Ass1, np.block([[a1 * Minv], [b1 * Minv]])) # eliminate predictior term Bss1 return libss.SSconv(Ass, Bss0, Bss1, C=np.eye(2 * N), D=np.zeros((2 * N, N))) def sort_eigvals(eigv, eigabsv, tol=1e-6): """ sort by magnitude (frequency) and imaginary part if complex conj """ order = np.argsort(np.abs(eigv)) eigv = eigv[order] for ii in range(len(eigv) - 1): # check if ii and ii+1 are the same eigenvalue if np.abs(eigv[ii].imag + eigv[ii + 1].imag) / eigabsv[ii] < tol: if np.abs(eigv[ii].real - eigv[ii + 1].real) / eigabsv[ii] < tol: # swap if required if eigv[ii].imag > eigv[ii + 1].imag: temp = eigv[ii] eigv[ii] = eigv[ii + 1] eigv[ii + 1] = temp temp = order[ii] order[ii] = order[ii + 1] order[ii + 1] = temp return order, eigv