schur_ordered
Returns block ordered complex Schur form of matrix \(\mathbf{A}\)
\[\begin{split}\mathbf{TAT}^H = \mathbf{A}_s = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}\end{split}\]
where \(A_{11}\in\mathbb{C}^{s\times s}\) contains the \(s\) stable eigenvalues of \(\mathbf{A}\in\mathbb{R}^{m\times m}\).
- param A:
Matrix to decompose.
- type A:
np.ndarray
- param ct:
Continuous time system.
- type ct:
bool
- returns:
Tuple containing the Schur decomposition of \(\mathbf{A}\), \(\mathbf{A}_s\); the transformation \(\mathbf{T}\in\mathbb{C}^{m\times m}\); and the number of stable eigenvalues of \(\mathbf{A}\).
- rtype:
tuple
Notes
This function is a wrapper of scipy.linalg.schur
imposing the settings required for this application.