der_Ceuler_by_v
Provides the derivative of the product between the rotation matrix \(C^{AG}(\mathbf{\Theta})\) and a constant
vector, \(\mathbf{v}\), with respect to the Euler angles, \(\mathbf{\Theta}=[\phi,\theta,\psi]^T\):
\[\frac{\partial}{\partial\Theta}(C^{AG}(\Theta)\mathbf{v}^G) = \frac{\partial \mathbf{f}}{\partial\mathbf{\Theta}}\]
where \(\frac{\partial \mathbf{f}}{\partial\mathbf{\Theta}}\) is the resulting 3 by 3 matrix.
Being \(C^{AG}(\Theta)\) the rotation matrix from the G frame to the A frame in terms of the Euler angles
\(\Theta\) as:
\[\begin{split}C^{AG}(\Theta) = \begin{bmatrix}
\cos\theta\cos\psi & -\cos\theta\sin\psi & \sin\theta \\
\cos\phi\sin\psi + \sin\phi\sin\theta\cos\psi & \cos\phi\cos\psi - \sin\phi\sin\theta\sin\psi & -\sin\phi\cos\theta \\
\sin\phi\sin\psi - \cos\phi\sin\theta\cos\psi & \sin\phi\cos\psi + \cos\phi\sin\theta\sin\psi & \cos\phi\cos\theta
\end{bmatrix}\end{split}\]
the components of the derivative at hand are the following, where
\(f_{1\theta} = \frac{\partial \mathbf{f}_1}{\partial\theta}\).
\[\begin{split}f_{1\phi} =&0 \\
f_{1\theta} = &-v_1\sin\theta\cos\psi \\
&+v_2\sin\theta\sin\psi \\
&+v_3\cos\theta \\
f_{1\psi} = &-v_1\cos\theta\sin\psi \\
&- v_2\cos\theta\cos\psi\end{split}\]
\[\begin{split}f_{2\phi} = &+v_1(-\sin\phi\sin\psi + \cos\phi\sin\theta\cos\psi) + \\
&+v_2(-\sin\phi\cos\psi - \cos\phi\sin\theta\sin\psi) + \\
&+v_3(-\cos\phi\cos\theta)\\
f_{2\theta} = &+v_1(\sin\phi\cos\theta\cos\psi) + \\
&+v_2(-\sin\phi\cos\theta\sin\psi) +\\
&+v_3(\sin\phi\sin\theta) \\
f_{2\psi} = &+v_1(\cos\phi\cos\psi - \sin\phi\sin\theta\sin\psi) + \\
&+v_2(-\cos\phi\sin\psi - \sin\phi\sin\theta\cos\psi)\end{split}\]
\[\begin{split}f_{3\phi} = &+v_1(\cos\phi\sin\psi+\sin\phi\sin\theta\cos\psi) + \\
&+v_2(\cos\phi\cos\psi - \sin\phi\sin\theta\sin\psi) + \\
&+v_3(-\sin\phi\cos\theta)\\
f_{3\theta} = &+v_1(-\cos\phi\cos\theta\cos\psi)+\\
&+v_2(\cos\phi\cos\theta\sin\psi) + \\
&+v_3(-\cos\phi\sin\theta)\\
f_{3\psi} = &+v_1(\sin\phi\cos\psi+\cos\phi\sin\theta\sin\psi) + \\
&+v_2(-\sin\phi\sin\psi + \cos\phi\sin\theta\cos\psi)\end{split}\]
- param euler:
Vector of Euler angles, \(\mathbf{\Theta} = [\phi, \theta, \psi]\), in radians.
- type euler:
np.ndarray
- param v:
3 dimensional vector in G frame.
- type v:
np.ndarray
- returns:
Resulting 3 by 3 matrix \(\frac{\partial \mathbf{f}}{\partial\mathbf{\Theta}}\).
- rtype:
np.ndarray