der_Teuler_by_w
Calculates the matrix
\[\frac{\partial}{\partial\Theta}\left.\left(T^{GA}(\mathbf{\Theta})
\mathbf{\omega}^A\right)\right|_{\Theta_0,\omega^A_0}\]
from the linearised euler propagation equations
\[\delta\mathbf{\dot{\Theta}} = \frac{\partial}{\partial\Theta}\left.\left(T^{GA}(\mathbf{\Theta})
\mathbf{\omega}^A\right)\right|_{\Theta_0,\omega^A_0}\delta\mathbf{\Theta} +
T^{GA}(\mathbf{\Theta_0}) \delta\mathbf{\omega}^A\]
where \(T^{GA}\) is the nonlinear relation between the euler angle rates and the rotational velocities and is
provided by deuler_dt()
.
The concerned matrix is calculated as follows:
\[\begin{split}\frac{\partial}{\partial\Theta}\left.\left(T^{GA}(\mathbf{\Theta})
\mathbf{\omega}^A\right)\right|_{\Theta_0,\omega^A_0} = \\
\begin{bmatrix}
q\cos\phi\tan\theta-r\sin\phi\tan\theta & q\sin\phi\sec^2\theta + r\cos\phi\sec^2\theta & 0 \\
-q\sin\phi - r\cos\phi & 0 & 0 \\
q\frac{\cos\phi}{\cos\theta}-r\frac{\sin\phi}{\cos\theta} & q\sin\phi\tan\theta\sec\theta +
r\cos\phi\tan\theta\sec\theta & 0
\end{bmatrix}_{\Theta_0, \omega^A_0}\end{split}\]
Note
This function is defined in a North East Down frame which is not the typically used one in SHARPy.
- param euler:
Euler angles at the linearisation point \(\mathbf{\Theta}_0 = [\phi,\theta,\psi]\) or roll, pitch and yaw angles, respectively.
- type euler:
np.ndarray
- param w:
Rotational velocities at the linearisation point in A frame \(\omega^A_0\).
- type w:
np.ndarray
- returns:
Computed \(\frac{\partial}{\partial\Theta}\left.\left(T^{GA}(\mathbf{\Theta})\mathbf{\omega}^A\right)\right|_{\Theta_0,\omega^A_0}\)
- rtype:
np.ndarray